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EXECUTIVE SUMMARY 

Microtransit services have gained popularity for the convenience they offer, including providing 

first-and-last-mile (FLM) connections to public transit systems. The City of Wilson, North 

Carolina, launched a microtransit service in 2020, replacing its regular fixed-route bus service.  

Microtransit can offer a larger service area and cater to a greater volume of travel demand than 

traditional transit services. However, the service performance of microtransit, such as passenger 

waiting time, needs improvement. Understanding city-level travel demand and mobility patterns 

is essential for developing improvement solutions. Passively generated, low-cost Wi-Fi log data, 

along with city-level coverage, provides an opportunity to analyze city-level travel patterns. This 

project aims to analyze Wi-Fi-based travel patterns, as well as microtransit travel patterns, to 

identify potential improvement solutions and validation approaches for microtransit services in 

North Carolina cities. 

The City of Wilson collected and shared Wi-Fi log and microtransit data. This study proposed a 

Wi-Fi log data processing framework to obtain travel activities from Wi-Fi log data. The study 

validated the accuracy of Wi-Fi detection by a field test conducted in Wilson. The study also 

analyzed the microtransit travel information obtained from the microtransit data in space and 

time. We applied a comprehensive spatial-temporal analysis to the user travel activities derived 

from the Wi-Fi and microtransit data to understand city-level human travel patterns. For instance, 

density-based spatial clustering analysis identified the origin and destination (OD) hotspots from 

the Wi-Fi and microtransit datasets. By investigating the common and unique hotspots, it’s 

possible to identify potential improvement solutions and make recommendations. Additionally, 

we developed a microtransit simulation platform that integrates background traffic, passenger 

behavior, and service vehicle operations to quantitatively evaluate the benefits of potential 

improvement solutions. 

 Primary Observations and Preliminary Conclusions  

• Our analysis of Wi-Fi detected travel activities shows the temporal and spatial patterns. The 

peak hour for employees is around 7 am, and the peak hours for non-employees are around 8 

am and 3 pm. Additionally, we observed an increased travel flow around the city center and 

between the bus garage and the medical center. The field test indicates that the overall 

sampling rate in the study area is approximately 75%, which is comparable to the rates 

reported in the literature. In terms of trajectory tracking, Wi-Fi can accurately detect the 

sequence of visited locations. The mean absolute percentage errors (MAPE) of detected 

travel time between visited locations are 20%, 16.7%, and 13.4% for driving, walking, and 

microtransit modes, respectively. 

• The analysis of microtransit data shows that the average passenger waiting time for the ride 

is 29.4 minutes for weekdays and 21.7 minutes for weekends (Saturdays). The demand for 

microtransit service is higher in the afternoon than in the morning and usually peaks at 3 pm. 
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The OD hotspots are generally in the city center, commercial areas, some recreational fields, 

and residential areas with a relatively high poverty rate. 

• The comparison of travel patterns from Wi-Fi and microtransit services indicates that the 

“common hotspots” are located in the city center and the surrounding low-income residential 

areas. The “unique hotspots” of microtransit are the commercial areas, while the “unique 

hotspots” of Wi-Fi are parks and government buildings. 40.7% of microtransit trips can 

access Wi-Fi when a service request is placed. However, actual Wi-Fi and microtransit 

common trips are few, making up only 0.63% of the total trips.  

• Based on the travel pattern comparison results, the following recommendations can be 

made.1) Installation of more Wi-Fi APs around the commercial area (grocery stores, 

shopping centers, and restaurants) to serve more users and travel activities.  2) Resuming the 

fixed route bus line connecting low-income residential areas and commercial areas to 

improve mobility efficiency. This study constructed a preliminary microtransit simulation 

platform to test and validate the feasibility of improvement solutions. 

In conclusion, this project analyzed travel patterns from Wi-Fi log data and microtransit services 

and provided recommendations for service improvement. Furthermore, we developed a 

simulation platform to test and evaluate potential service improvement solutions. The results and 

analysis approach developed in the project will help Wilson and other North Carolina cities with 

public free Wi-Fi to improve existing microtransit services or deploy new ones by identifying 

city-level travel demand (OD pairs) and mobility patterns.  
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1. Introduction 

Microtransit improves public transit riders’ experience by operating a small-scale, on-demand 

transit shuttle fleet that can offer either fixed-route and fixed-schedule, as well as flexible-route 

and on-demand scheduled services [1]. An increasing number of transit agencies across the 

nation are deploying microtransit to serve residents and visitors, such as L.A. Metro in Los 

Angeles, CA [2], Central Ohio Transit Authority (COTA) [3], and King County Metro in Seattle, 

WA [4]. Microtransit integrates into existing public transit systems and enhances public transit 

service where running fixed-route buses is challenging. Other transit agencies directly deploy on-

demand and flexible route microtransit services to replace traditional fixed-route and fixed-

schedule buses. For example, in 2017, Arlington, Texas, replaced its fixed-route buses with an 

on-demand microtransit system, providing nearly half its 400,000 residents with transportation 

access that was not there before [5]. 

Southeastern cities are embracing microtransit. RIDE, powered by Via, is an on-demand, 

dynamically routed, mobile-app-powered shuttle service in partnership with the city of Wilson in 

North Carolina. Since 2020, the service has deployed about 26 gasoline-powered Toyota Sienna 

minivans in the county and city of Wilson, NC, which entirely replaced a previously existing 

fixed-route bus system and expanded the transit service coverage by 60% [6]. Microtransit 

deployments were incentivized, revealing Wilson's specific market dynamics, travel patterns, 

demographics, and travel preferences. Travel data, such as trip origins and destinations (OD), 

were collected. A recent survey indicates the success of the program and confirms that the RIDE 

program provides a critical service to the low-income, transit-dependent population. 52% of 

RIDE trips are primarily for commuting, while 38% are for essential errands (grocery, 

healthcare). Demographically, 57% of survey respondents report an annual household income 

below $25,000, and 86% do not have access to a personal vehicle. The RIDE program survey 

data indicate that economic-related service factors (e.g., fare, service time, fleet size) 

significantly sustain a microtransit system that provides an indispensable mobility option to 

transportation-disadvantaged groups.  

Although the preliminary success of the RIDE program indicates a promising future for 

microtransit in Wilson, North Carolina, the microtransit service can be further improved in 

several aspects, including reducing riders’ waiting time, vehicle re-dispatching, expanding the 

utility of transit and fleet size, and optimizing management. Understanding city-level travel 

demand and mobility patterns based on real-world travel data is considered a cornerstone to 

improve the system. However, collecting detailed city-level travel demand data is not a trivial 

task. Traditional travel surveys generally have a low sampling rate (about 5% of the population). 

As a result, such travel survey data and estimates may not be sufficient or accurate for estimating 

travel demand. 

Aside from traditional travel surveys, Wi-Fi log data recording the user communication actions 

with detailed time and location information can more accurately reflect city-level human travel 
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activity. The widespread deployment of free public Wi-Fi services and the high penetration rate 

of smartphones enable the passive collection of Wi-Fi log data over a relatively long period. Wi-

Fi log data indicates the number of people and travel activities of individuals who carry and use 

Wi-Fi-enabled mobile devices. Previously, public Wi-Fi log data collected on university 

campuses have been studied to understand the daily movement and travel behaviors of students 

and faculty [7, 8]. Beyond that, public Wi-Fi service deployments have recently gained 

momentum in a few city communities or neighborhoods, such as New York City, NY [9], and 

Copenhagen, Denmark [10]. Those studies analyzed Wi-Fi-based human travel in large 

metropolitan areas and densely populated regions. Still, they did not address Wi-Fi-based human 

travel patterns in small-scale, transportation-disadvantaged, and underserved cities, especially in 

North Carolina. Greenlight in the city of Wilson, NC, provides free public Wi-Fi services 

throughout the city and in key locations, including downtown, the Amtrak train station, Gillette 

Athletic Complex, and Southern Bank Stadium. Greenlight’s raw Wi-Fi log data records city-

wide Wi-Fi user daily activity information, reflecting human travel demand and movement, 

including transit riders' travel activities. Therefore, Wi-Fi-based city-level travel demand data, 

such as origin-destination (OD) pairs, provides an opportunity to understand city-level travel 

patterns, thereby improving microtransit service and transit fleet operations. 

As a result, this project explored how city-level, Wi-Fi-based human mobility data can be used to 

enhance microtransit services. By identifying city-level travel demand (e.g., OD pairs) and 

mobility patterns derived from Wi-Fi data, the project can help Wilson and other North Carolina 

cities with public free Wi-Fi to improve existing microtransit or deploy new microtransit 

services. The major achievements of this project include: 

1) Developing a processing and analyzing framework for public Wi-Fi log data to estimate 

and validate city-level human travel demand and mobility patterns. 

2) Conducting a field test in Wilson to validate Wi-Fi data accuracy and Wi-Fi detection 

performance.  

3) Characterizing microtransit operation and rider behaviors by analyzing the microtransit 

data in Wilson. 

4) Identifying potential improvements for the microtransit system by correlating and 

comparing travel demand, spatially and temporally. 

5) Evaluating network performance and benefits of the proposed microtransit service 

improvements by developing a microtransit simulation platform in Wilson. 
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2. Literature Review 

2.1. Wi-Fi Log Data 

2.1.1. Wi-Fi log data processing approaches 

Wi-Fi log data contains detailed communication actions between clients (e.g., smartphones, 

laptops), access points (APs), and servers. Generally, the messages describing the connection, 

disconnection, and roaming process are more critical since they indicate the client’s activity, i.e., 

when and where the clients arrive, leave, or travel between APs. The related messages in syslog, 

including association, disassociation, re-association, authentication, and de-authentication [11-

13] were considered and processed. Approaches have been proposed to process the Wi-Fi log 

data based on key information, such as association messages from the university Wi-Fi data [8, 

14]. There are several challenges in processing Wi-Fi log data, including the “ping-pong” effect 

and multi-device issues. Jahromi et al. pointed out that ping-pong events occur when clients 

frequently (in a short period) change their associations to nearby APs, while these changes aren’t 

the result of actual movements [13]. Traunmueller et al. removed entries captured by multiple 

Wi-Fi APs simultaneously in the procedure of detecting client count and user trajectory [9]. The 

multi-device problem arises when a person carries more than one device to communicate with 

APs while moving around. An average of 1.3 devices per person on campus [15, 16] was 

estimated. To solve such a problem, Trivedi et al. used the device-user mapping information from 

the authentication events in Wi-Fi log files to ensure that only one device of the same user was 

counted [17]. However, the data provider may anonymize user identity-related information due 

to privacy concerns, making it more challenging to use device-user mapping. Additionally, data-

driven methods have been developed to address multi-device problems. Trivedi et al. classified 

the type of each device by checking its network behavior and found out that 73.08% of the total 

devices in the University of Massachusetts campus are always-on devices, and the remaining 

26.91% are hibernating devices [16, 18]. Zhang et al. identified three types of noisy devices that 

cannot reflect human mobility well by setting empirical rules on their network connection 

behavior, which took up to 63% of the total devices in Wi-Fi raw data obtained from the 

University of Macau [16]. 

2.1.2. Wi-Fi-based Human Activity Analysis and Applications 

Wi-Fi log data has been widely utilized to support the analysis of human travel and mobility. 

Several analysis methods have been conducted to reveal the travel activity patterns from Wi-Fi 

log data, including spatial and temporal analysis, indoor hotspot analysis, and trajectory analysis. 

Spatial and temporal analysis have been applied to reveal mobility patterns in both temporal 

and spatial dimensions. Zakaria et al. studied the daily building occupancy trends and occupancy 

heatmaps in buildings before and during the COVID-19 outbreak to validate the effectiveness of 

crowd management policies during the pandemic using Wi-Fi data [8]. Soundararaj et al. 

demonstrated the temporal trend of high-street footfall using the proposed Wi-Fi-based footfall 

counting methodology, enabling a better conceptualization of urban mobility with a people 

dimension [19]. Hang et al. examined the Wi-Fi-detected hourly activity preferences at various 

locations within Purdue University on weekdays and weekends to develop a more accurate point 

of interest (POI) prediction method [20]. Traunmueller et al used origin-destination (OD) flow 
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between APs to build a network graph for different times of day to check the variation of 

mobility patterns in the Lower Manhattan section in NYC [9]. For indoor hotspot analysis, 

Trivedi et al. used Wi-Fi log data to estimate indoor occupancy hotspots to understand indoor 

human mobility better [21]; Marakkalage et al. detected indoor POI by clustering Wi-Fi 

fingerprints, addressing the limitations of GPS, which loses service in indoor environments [22]. 

In terms of trajectory analysis, human contact tracing was studied using Wi-Fi log data. Trivedi 

et al. [17] proposed a Wi-Fi Trace method to generate location reports and proximity reports for 

Wi-Fi users, supplementing the limitations of Bluetooth sensors that rely on mass adoption. Tu et 

al. leveraged Wi-Fi log data to obtain both contact duration and social distance between users, 

thereby improving the quality of contact tracing [23]. 

2.1.3. Wi-Fi Data Validation 

Extensive research has been conducted on the validation of data quality, as data may yield biased 

results due to limited signal coverage and sensing performance across different locations. Data 

validation experiments have been conducted in various locations, including university campuses, 

city downtown and uptown areas, and shopping center complexes, from multiple perspectives, 

such as the accuracy of people count, location, session duration, and temporal lags in trajectory. 

For instance, Iresha et al. compared the room occupancy or people count obtained from Wi-Fi 

sensing for four classrooms on a university campus (UNSW) with the observed room occupancy 

and got an overall symmetric mean absolute percentage error (SMAPE) of 12.1% [15]. Trivedi et 

al. collected data from a group of 18 volunteers over 37 days, visiting 19,000 locations on 

campus, and achieved a precision of 0.93 and a recall of 0.94 for testing the location accuracy of 

clients by comparing Wi-Fi sensing with observation. Additionally, they achieved 100% 

accuracy for duration of sessions longer than 3 minutes. Trivedi et al. also compared the 

temporal lag between computed Wi-Fi trajectories with ground truth user trajectory and found 

out that temporal lags can be as high as 10 minutes for APs closely located, but are less than 1 

minute for most of the other APs [17]. Similarly, Swain et al. inferred a university location of 46 

students in 34 lectures over three months and got a precision of 0.89 and a recall of 0.75 in terms 

of people count [14]. For accuracy tests in cities, Traunmueller et al. compared the official 

manual daily pedestrian count with Wi-Fi probe requests in several locations of the Lower 

Manhattan section in New York City, with an offset from -11.37% to 10.36% [9]. At a retail high 

street in London, Soundararaj et al. compared the Wi-Fi-detected footfall from 5 locations with 

manual counts and got a mean absolute percentage error (MAPE) from 10% to 50% [19]. For 

building complexes, Wi-Fi can identify 40% to 60% of the customer count detected by human 

detectors at a large underground shopping mall in Nagoya [24]. Fukuzaki et al. demonstrated that 

the maximum error in the number of people detected by Wi-Fi packet sensors in the mall for 

each hour, accumulated over a day, is less than 7.9% [25].  

2.2. Microtransit Service 

Microtransit, a common form of demand-responsive transportation (DRT), utilizes vehicles such 

as vans and relies on app-based platforms for real-time booking and optimized routing [26]. It 



5 

 

complements the public transportation system by providing first-and-last-mile (FLM) 

connections or offering mobility services for low-density areas where public transportation 

service may be inefficient [26]. Several benefits have been identified for microtransit services. 

For example, Mayaud et al. concluded that the high induction rate for microtransit among 

women, older adults, people with disabilities, and low-income households highlights 

microtransit’s ability to address long-standing inequities in transit planning [26]. Liezenga et al. 

found that microtransit addressed transportation issues by increasing accessibility, effectively 

reaching vulnerable rider groups, and creating travel opportunities in less spatially concentrated 

areas [27]. Lucken et al. found that microtransit vans have the potential to reduce vehicle miles 

traveled (VMT) more than taxis or transportation network companies (TNCs) by enabling greater 

vehicle occupancy [28]. Aside from the benefits, potential disadvantages have also been 

observed. Lucken et al. mentioned that microtransit services may pull riders away from more 

sustainable modes, such as buses, rail, bicycles, or walking [28]. However, Geržinič concluded 

that combining subsidized microtransit with higher parking prices is the most effective strategy 

for achieving a modal shift, primarily from car to microtransit, while minimizing the impact on 

public transport [29]. Furthermore, Mayaud et al. proposed a framework to redesign the transit 

system based on microtransit data, aiming to improve overall transportation efficiency [30].  

To conclude, with proper planning and management, microtransit services can improve the 

accessibility and effectiveness of regular fixed-route public transit systems, thereby enhancing 

the overall efficiency of the transportation system.  

2.3. Transportation Simulation  

Transportation simulation can be applied to test, evaluate, and optimize traffic operations by 

replicating real-world traffic scenarios. Generally, there are three types of simulation models: 

macroscopic, mesoscopic, and microscopic. Macroscopic models are based on the deterministic 

relationships of flow, speed, and density of the traffic stream [31]. It can build a large-scale 

traffic simulation on an aggregated level; however, the dynamics of vehicles cannot be simulated 

[32]. On the contrary, microscopic models can simulate the movement of individual vehicles 

based on car-following and lane-changing theories [31]. It can model detailed travel behavior 

and complex traffic phenomena; however, it is relatively hard to calibrate and has a higher 

computational burden [32]. In between, mesoscopic models combine the properties of both 

microscopic and macroscopic models[31]. It can capture the aggregated-level fluctuation of 

traffic and is relatively easy to calibrate with higher computational efficiency; however, it cannot 

model vehicle behavior and vehicle-pedestrian interaction [32]. 

To evaluate the performance of microtransit operation, this project applied a microscopic 

simulation model. Microscopic simulation models have been applied to various types of 

evaluations involving detailed vehicle behaviors. For example, Zhang et al. constructed a 

simulator, CAVSim, to evaluate the decision, planning, and control methods for CAVs at 

different levels [33]. Zatmeh-Kanj et al. used TRANSMODELER to study car-following 



6 

 

behavior in the context of distracted driving [34]. Zhu et al. used Simulation of Urban Mobility 

(SUMO) to test and evaluate the proposed demand-side cooperative shared automated mobility 

(DC-SAM) service. It found that the proposed DC-SAM service can significantly reduce the 

SAV’s operating costs in terms of vehicle miles traveled (VMT), vehicle hours traveled (VHT), 

and vehicle energy consumption (VEC) by up to 53%, 46%, and 51%, respectively. [35]. 

Meshkani et al. proposed an on-demand transit service for the first-mile connection and used 

SUMO for performance evaluation. Compared to the existing bus transit service, the proposed 

on-demand transit service is expected to result in a 36% reduction in total travel time and a 41% 

reduction in detour time [36]. 

2.4. Point Data Clustering for Mobility Analysis 

Clustering is a technique that groups unlabeled data with little or no supervision into different 

classes, by dividing objects with similar characteristics into the same class and different objects 

into other classes [37]. Mobility data typically includes GPS trajectories, origin-destination (OD) 

locations of individual trips, or OD stations/stops for transit systems, which can comprise a large 

number of records and thus represent a type of big spatial data. To enhance data interpretability, 

individual origin and destination locations can be clustered to reveal aggregated mobility 

patterns, such as identifying urban hotspots. 

Urban hotspot refers to  regions with frequent human mobility activities, heavy traffic flow, and 

prosperous economic activities [38]. A comprehensive understanding of the characteristics and 

patterns of travel activities with urban hotspots is critical for the sustainable development of 

modern cities [39]. Xia et al. used a network-based spatiotemporal field clustering method to 

identify urban hotspots from pick-up events extracted from taxi trajectories in downtown areas of 

Nanjing, China, and used an isoline model to delimitate the hotspot centeredness [38]. Ran et al. 

proposed a novel K-means clustering method based on a noise algorithm to capture urban 

hotspots from taxi GPS trajectory points [40].  Density-based clustering methods have also been 

widely applied to detect urban hotspots. Li et al. proposed the Spatial-Temporal Hierarchical 

Density-Based Spatial Clustering of Applications with Noise (ST-HDBSCAN) model to discover 

uneven clusters from spatiotemporal taxi GPS trajectory data and to understand the evolution of 

urban hotspots [41]. Cesario et al. pointed out that though classic density-based clustering 

algorithms are suitable for discovering hotspots characterized by homogeneous density, their 

application on multi-density data can produce inaccurate results. Cesario et al. compared the 

multi-density-based clustering algorithm called City Hotspot Detector (CHD) with other classic 

density-based clustering methods, including Density-Based Spatial Clustering of Applications 

with Noise (DBCSAN), Hierarchical Density-Based Spatial Clustering of Applications with 

Noise (HDBSCAN), and Ordering Points To Identify the Clustering Structure (OPTICS), and 

found that CHD outperformed other methods [42].  
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To summarize, mobility point data can be clustered for hotspot analysis, providing better support 

for urban and transportation planning and management. Different clustering models have been 

applied to mobility data, especially density-based clustering methods such as DBSCAN.  
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3. Data Preparation 

3.1. Wi-Fi Log Data 

Wi-Fi log data records communication activities between network devices (i.e., clients) and 

access points (APs), as well as interactions with internet servers. Figure 1 shows an example of 

raw Wi-Fi log data. Since the log data contains the timestamps of each client connecting to or 

disconnecting from each AP, the movement sequence of each client can be obtained once the 

location of each AP is known.  

 
Figure 1: Example of Wi-Fi log Data 

The City of Wilson provided raw Wi-Fi log data from 02/14/2024 to 02/27/2024, as well as the 

location of APs. Figure 2 shows the AP locations. The city center has the densest APs, and other 

APs are located around public institutions, hospitals, schools, parks, some residential areas, and 

commercial areas. For privacy protection, the city IT department anonymized the Media Access 

Control (MAC) addresses of the clients (e.g., mobile phones, tablets, and laptops) by replacing 

them with the corresponding device identification numbers.  

 

Figure 2: Location of APs in the city of Wilson 
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3.2. Microtransit Data 

We obtained microtransit data from the microtransit system in the city of Wilson, NC. The 

microtransit service has been using 15 on-demand shuttles to replace the fixed-route transit 

service since 2020 [43]. Riders can use the mobile application (Via) to request or reserve 

microtransit service, and a shuttle is matched and sent to service the ride request. The Via app 

records all trip information, including the origin, destination, pickup time, drop-off time, and the 

related rider ID, vehicle ID, and driver ID, as shown in Figure 3. With the information we 

obtained, the origin-destination (OD) flow of the microtransit service in February 2024 is shown 

in Figure 4. The microtransit service covers the whole city area. There was a total of 23,018 

requests in February 2024. Figure 5 shows the distribution of request status for seven categories, 

with 70.1% (16,101) of the total requests being completed. Figure 6 shows the daily number of 

requests. There are more requests on weekdays than on Saturdays. The average daily number of 

requests on weekdays is 960, and the count is 660 for Saturdays. Note that although there is no 

microtransit service on Sundays, an average of 50 requests are placed on Sundays. 

 

Figure 3: Example of Microtransit Data 

 

Figure 4: OD Flow from Microtransit Service 
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Figure 5: Distribution of Request Status for Microtransit Service in Wilson during Feb 2024 

 

Figure 6: Daily Number of Requests during Feb 2024 

3.3. Other Datasets 

To understand the impact of demographic features on microtransit and Wi-Fi services, we 

obtained census block groups and related features from the 2021 American Community Survey 
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(ACS) [44]. Figure 7 illustrates the polygons of census block groups that cover the city of 

Wilson, along with the population of each census block group. 

 

Figure 7: Census Block Groups and Related Population 

 We collected fatal and serious injury crash locations were or the city of Wilson from the 

NCDOT website [45]. 63 crashes were recorded from 2014 to 2023 in the city, including 14 

types of crashes, as shown in Figure 8. The top 3 crash types are 1) pedestrian-involved crashes, 

2) angle crashes, and 3) run-off-road-right crashes. Figure 9 shows the spatial distribution and 

density of the crashes. It shows that the high-density area is concentrated around the city center 

and extends south to the residential area. 
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Figure 8: Number of Crashes for Each Crash Type 

 

Figure 9: Spatial Distribution of Crashes  
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4. Methodology 

4.1. Wi-Fi Log Data Processing and Validation 

A Wi-Fi data processing framework was developed to process Wi-Fi log data and identify client 

travel activities. Further, field tests were conducted in the City of Wilson to validate the accuracy 

of Wi-Fi detection. 

4.1.1. Wi-Fi Log Data Processing 

IEEE 802.11x standards indicate that a Wi-Fi connection includes three major steps [46], 

including the scanning process, authentication process, and association process. For the 

disconnection procedure, disassociation or de-authentication is also recorded. According to that, 

the Wi-Fi log data processing approach has four steps, including 1) raw data pre-processing; 2) 

AP-level session archiving; 3) location-level session reconstruction; 4) API based user travel 

activity generation. 

• Raw Data Pre-Processing 

Key log messages in raw Wi-Fi log data, such as authentication requests and successes, as well 

as association requests and successes, as well as de-authentication and disassociation, were 

extracted to form Wi-Fi communication actions with the attributes of Time, Type, Client ID, AP 

ID, and Location ID. Time (or t) represents the timestamp of a log. Type indicates the type of 

communication actions, i.e., connection(s) or disconnection(s), according to communication 

status messages. The Client ID is a unique identifier for each client, such as a device’s MAC 

address. For privacy protection, the device's MAC addresses were substituted and re-coded. 

APID identifies each AP, while LocationID denotes the location of the AP.  

• AP-Level Session Archiving 

An AP-level session describes the connection and disconnection of an AP for a client, which can 

be constructed by matching a client’s communication action pair, comprised of connection and 

disconnection for each AP. The attributes of the AP-level session include ClientID, APID, 

StartTime, and EndTime. StartTime is the connection time, while EndTime is the disconnection 

time. 

It is easy to match the connection and disconnection actions in typical cases, where each 

connection action has a corresponding disconnection action. However, some exceptional cases, 

related scenarios, and solutions are described in Table 1. Those special cases cannot be removed 

from the data, as they may comprise a significant portion, especially in areas where Wi-Fi 

coverage is unstable or clients are detected unintentionally. Sometimes, there are only connection 

messages between a client and an AP, as stated in case 1. This might be because the actual 

network connection is not established successfully, while the AP does discover the client nearby 

during the scanning process. The solution is to set the EndTime the same as the StartTime. Case 

2 shows that there are only disconnection messages between a client and an AP. Two scenarios 
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may contribute to this case. One reason is that the connection message may be missing because 

no actual network connection message has been established. The solution is to set the StartTime 

the same as the EndTime. Another scenario is that the duplicated disconnection messages are 

generated after the client leaves the AP's signal range due to system lag. Messages resulting from 

system lag were removed. The two scenarios can be separated by using a time threshold for the 

gaps between consecutive disconnection actions from the same client and AP. If the gap is less 

than a threshold, the message is generated due to system lag, which belongs to scenario 2 and 

was removed. The threshold is determined by calculating the average gap time between 

consecutive disconnection actions from the same client and AP, which may differ in study areas. 

Another case that needs attention is the Ping-Pong effect, shown in Case 3 in Table 1, which 

causes unnecessary fluctuation of communication actions and blurs the client's activity. The 

ping-pong effect can be detected by three conditions [13]: 1) the duration of the AP-level session 

is shorter than a threshold TTD; 2) the time gap between two continuous AP-level sessions is 

shorter than a threshold TTT; 3) the occurrence of AP change for the same client during TTD +

2𝑇𝑇𝑇 is more than one time (e.g., more than two AP-level sessions occur within 20 seconds). In 

this project, TTD is set to 10 seconds, and TTT is set to 5 seconds. Once detected, the AP-level 

sessions with a ping-pong effect were smoothed and merged with the immediately preceding or 

following non-ping-pong AP-level sessions of the client, whichever had a longer duration. 

After the client leaves the signal range of the AP, multiple disconnect messages may be 

generated, which is normal due to the log message generation mechanism. The solution is to use 

the first consecutive disconnect message to avoid lag. Additionally, some disconnect messages 

may be generated later than the connection message of the subsequent session between the same 

AP and clients, due to the lag in generating syslogs, especially when APs are located close to 

each other. To avoid overlapping, the solution is to use the StartTime of the following session as 

the EndTime of the current session. 

Table 1: Special Case, Related Scenarios and Solutions for AP-level Session Construction 

Case 

No. 
Case Scenario Solution 

1 

The client has only 

connection actions for 

some or all APs 

Client detected by APs 

without an actual 

connection (scanning) 

Set the EndTime to be the same 

as the StartTime 

2 

The client has only 

disconnection actions for 

some or all APs 

Client detected by APs 

without an actual 

connection (connection 

message missed) 

Set the StartTime to be the 

same as the EndTime 

Generated because of 

system lag after the client 

leaves 

Remove the disconnection 

action 
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3 Ping-Pong phenomenon 

Clients in the signal 

overlap area from several 

APs 

Ping-Pong Smoothing 

4 

The disconnect message is 

generated multiple times 

after disconnection 

Normal due to the log 

message generation 

mechanism 

Use the first disconnect 

message 

5 

The disconnect message is 

generated later than the 

connection message of the 

following session. 

APs are located close to 

each other. 

Use the StartTime of the 

following session as the 

EndTime of the current session. 

 

• Location-Level Session Reconstruction 

On top of AP-level sessions, location-level sessions describe how a client travels across a 

sequence of visited locations and stays in each location. Each location may have more than one 

AP, and all AP-level sessions are merged as location-level sessions. Each client (ClientID) needs 

several records to describe the complete location-level travel activity, including visited locations 

(StartLocation, EndLocation) and their timestamps (StartTime, EndTime). According to different 

activity statuses, the location-level client activity contains two types of sessions,  Stationary 

Sessions [47] and Transitional Sessions [48], which describes the status of clients staying in one 

location or traveling between locations, respectively. It is worth noting that the StartLocation 

equals the EndLocation for a stationary session. Figure 10 shows an example of client activity 

that contains three transitional sessions (TS1, TS2, TS3) and three stationary sessions (SS1, SS2, 

SS3), where TS1 is represented as {Client1, t1, t2, l1, l2}, SS1 is represented as 

{Client1, t2, t3, 𝑙2, l2} and so on. For TS1, the StartLocation and EndLocation are 𝑙1 and 𝑙2 

respectively and 𝑡1, 𝑡2 are the StartTime and EndTime; for SS1, the StartLocation and 

EndLocation are both 𝑙2. 𝑡2 and  𝑡3 are the StartTime and EndTime.  

 

Figure 10: Example of Client Travel Activity 

Determination of Start and End Location 

The location can be obtained from a single AP or the center of the AP cluster. For AP cluster 

center cases, such as APs in the same location, the AP-level sessions of all APs in the cluster for 
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the same client are merged into a combined AP-level session by ordering the AP-level sessions 

of the cluster by their start times. The first AP-level session’s StartTime is the new StartTime, 

and the last AP-level session’s EndTime is the new EndTime. The AP cluster was assigned to a 

unique identifier, ClusterID. After that, the processed AP sessions have the attributes of 

ClientID, APID/ClusterID, StartTime, and EndTime. As shown in Figure 11, the processed AP 

sessions are combined from 2 AP-level sessions. 

 

Figure 11: Example of Processed AP Sessions 

The duration of processed AP sessions or the time gaps between StartTime and EndTime can be 

used to determine the client’s (stationary or transitional) status around the location. The client 

can either pass by a location (e.g., duration <= 5 minutes, defined as a waypoint) or stay at a 

location for a period (e.g., duration > 5 minutes, defined as origin or destination). In other words, 

the location can be either a waypoint or an origin/destination, depending on the duration of the 

post-processed AP-level session. Suppose the APID/Cluster ID represents a waypoint. In that 

case, the StartLocation of such client activity is the location of the current post-processed AP-

level session, and the EndLocation is the location of the next post-processed AP-level session, 

indicating that the client travels from one location to the other. Suppose the APID/Cluster ID 

represents an origin or destination. In that case, both StartLocation and EndLocation are in the 

same location as the APID/ClusterID, indicating that the client remains in that location for a 

period. 

Determination of Start and End Time 

The StartTime and EndTime of a client activity session indicate when a client passes a waypoint 

or arrives at or departs from an origin or destination. However, the timestamps in the post-

processed AP-level sessions differ, representing when the client connects to or disconnects from 

an AP or AP cluster. Modifications are required to accurately reflect the pass-by time and the 

arrival/departure time, enabling a more accurate estimation of client or user travel time between 

waypoints and origins/destinations, taking into account the Wi-Fi signal range and connection 

features. If the location is a waypoint, the visit time (VT) or pass-by time is the middle 

timestamp between the StartTime and EndTime of the post-processed AP-level session, as shown 

in equation (1). If the location is an origin/destination, the arrival time (AT) is calculated as the 

StartTime of the post-processed AP-level session plus an approaching time; the departure time 
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(DT) is the EndTime of the post-processed AP-level session minus a leaving time” as shown in 

equations (2) and (3). Because the AP signal has a specific and limited range, the client may be 

connected before arriving and disconnected after departing from the location. Assuming an AP 

has a range of 100 meters outdoors [49] and the average walking speed is 1.5 meters per second 

[50], both approaching and leaving times are estimated as 67 seconds. 

𝑉𝑇𝑡 =
𝐸𝑛𝑑𝑇𝑖𝑚𝑒𝑎𝑝𝑡

− 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑎𝑝𝑡

2
 

(1) 

𝐴𝑇𝑡 = 𝐸𝑛𝑑𝑇𝑖𝑚𝑒𝑎𝑝𝑡
− 67 𝑠𝑒𝑐 (2)  

𝐷𝑇𝑡 = 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑎𝑝𝑡
+ 67 𝑠𝑒𝑐 (3) 

 

Therefore, for stationary sessions (origins/destinations), the StartTime for the session t is the 

arrival time ATt, and the EndTime is the departure time DTt. For transitional sessions 

(waypoints), the StartTime for the session t is the departure time of a destination DTt, and the 

EndTime is the arrival time of the following origin ATt+1. After Wi-Fi data processing, a client 

activity table of all clients was generated. As shown in Table 2, the client activity contains the 

following attributes: ClientID, StartTime, EndTime, StartLocation, and EndLocation. The 

example shows that client 00001 first started the trip from L1 at t1, passed by L2 at t2, and 

arrived at L3 at t3. After arriving, the client stayed at L3 from t3 to t4 and then left the study area 

from L4 at t5. 

Table 2: Example of Client Activity Table 

ClientID StartTime EndTime StartLocation EndLocation 

00001 t1 t2 L1 L2 

00001 t2 t3 L2 L3 

00001 t3 t4 L3 L3 

00001 t4 t5 L3 L4 

 

Note that stationary devices, such as desktops, were removed since they cannot accurately 

represent users’ travel activity. Thus, devices with only stationary sessions or those that have an 

average daily connection time greater than 16 hours were removed before further processing. 

• API-Based User Travel Activity Generation 

User travel activity, including visited location sequences, travel routes, and travel modes, was 

generated from location-level sessions. The visited location sequence includes a list of locations 

(i.e., OD and waypoints) ordered by the time of visit during the day. With origins, destinations, 

and waypoints, travel modes and routes of segments in a visited location sequence were 

generated with road network information. This study utilizes the Google Distance Matrix API 

and Google Directions API to obtain detailed routing information. The Google Distance Matrix 

API can return the travel distance and duration between an origin and a destination by accepting 

an HTTPS request containing the origin and destination for a given mode of transport [51]. The 
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Google Directions API can return detailed directions, broken down into routes, legs, steps, and 

encoded polyline representations of the entire travel route between the specified origin, 

destination, and waypoints for a chosen mode of transport [52].  

In terms of travel mode, this study only considers walking and driving. Considering that clients 

may choose multiple travel modes to travel from their origins to destinations, such as first 

walking to the parking lot and then driving to a destination, the transitional sessions were first 

divided into sub-sessions by waypoints, and the travel mode of each sub-session was determined. 

By comparing the durations of sub-sessions with the durations for both travel modes (driving and 

walking) obtained from the Google Distance Matrix API, the travel mode of each sub-session 

was determined based on the closeness of the duration. Consecutive sub-sessions with the same 

travel mode were combined to form a single mode trip. The origin of the single-mode trip is the 

first location of the consecutive sub-sessions, and the destination is the last location. The 

waypoints are the locations in between. Then, the Google Directions API can generate a detailed 

route for a single-mode trip, including a series of turning or shaping points, given the coordinates 

of the origin, destination, waypoints, and travel mode. For example, as shown in Figure 12, a 

client is detected leaving a location for location 4, passing through locations 2 and 3. Thus, there 

is a transitional session between locations 1 and 4, which can be divided into three sub-sessions, 

including locations 2 and 3. The travel mode for sub-session 1 was walking, and the travel mode 

for sub-session 2 and 3 was driving. As a result, a walking route from location 1 to location 2 

was generated, and a driving route from location 2 to location 4, passing by location 3, was 

generated for the client. By combining these trips, the topology of the user's travel route between 

origins and destinations was obtained. 

 

Figure 12: Example of Travel Activity Generation 
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4.1.2. Wi-Fi Log Data Validation 

To validate the quality and accuracy of Wi-Fi log data, this study conducted two types of tests: a 

sampling rate test and a trajectory tracking test. Sampling rate tests assess Wi-Fi's capability to 

detect human presence, while trajectory tracking tests evaluate the performance of Wi-Fi user 

tracking when clients travel among different locations. Volunteers were manually connected to 

the public Wi-Fi network using their smartphones for the first time. They then enabled an auto-

connection function, allowing their devices to connect to Wi-Fi automatically. 

• Sampling Rate Test 

A sampling rate is the ratio of the number of Wi-Fi detected clients to the total number of people 

visiting the location. Thus, the number of people visiting the locations, serving as the ground 

truth, was collected. To make the obtained sampling rate more representative, the study used 

three distinct types of locations in downtown Wilson, including Wilson Utilities Center (WUC), 

a government institution, Gig East Exchange office (GEEO), a shared working space that sits on 

the roadside, and the Wilson Public Library (WPL), a location for public activity. Table 3 shows 

the data collection period for each location. Volunteers were present at the test locations and 

manually counted the time and number of people moving in (inflow) and out (outflow). The 

sampling rate of inflow (SR1) and outflow (SR2) was calculated as shown in the equation (4) and 

(5). 

Sampling Rate 1(SR1) = Inflow recorded by Wi-Fi/ Inflow collected manually (4) 
 

 

Sampling Rate 2(SR 2) = Outflow recorded by Wi-Fi/ Outflow collected manually  (5) 

Table 3. Experiment Sessions for Sampling Rate Test 

Sessions Time Period Location 

2/21/2024 

1 13:00-17:00  WUC 

2 14:00-17:00  GEEO 

2/22/2024 

3 9:00-16:30  WUC 

4 9:00-12:00 GEEO 

5 14:00-16:30  WPL 

• Trajectory Tracking Test 

Trajectory tracking tests compared Wi-Fi-detected user trajectories with the actual user 

trajectories, which included walking tests, driving tests, and microtransit tests. In the walking 

tests, a volunteer walked through the designated locations in downtown Wilson with Wi-Fi signal 

coverage and recorded the actual arrival and departure times at each location. In the driving tests, 

one volunteer drove to the designated AP locations in order, and the other volunteers recorded 

the arrival and departure times. During both walking and driving tests, the volunteers stopped at 
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the designated location for a few minutes to ensure their devices’ Wi-Fi auto-connection was 

enabled. In the microtransit test, a volunteer traveled between locations with Wi-Fi signal 

coverage using microtransit shuttles by requesting service via a smartphone when connected to 

Wi-Fi. Figure 13 shows the designated locations and related routes for walking, driving, and 

microtransit. 

   
(a) Driving Trajectory (b) Microtransit Trajectory (c) Walking Trajectory 

Figure 13: Trajectory tracking test 
 

4.2. Spatial Clustering Method 

To explore the spatial clustering features of travel activity from both Wi-Fi log data and 

microtransit services, the study applied density-based clustering methods to identify origin and 

destination hotspots.  

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

The goal of density-based clustering algorithms is to group points that are densely packed and 

label points in low-density regions as noise. Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) [53] achieves this goal by identifying the core object, border object, 

and noise. Assuming 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} is a dataset containing 𝑛 objects and 𝐷 is a distance 

matrix with a dimension of 𝑛 × 𝑛, containing pairwise distance 𝑑(𝑥𝑝, 𝑥𝑞) where 𝑥𝑝, 𝑥𝑞 ∈ 𝑋. As 

defined by Campello et al. [54], an object 𝑥𝑝 is called a core object with respect to 𝜀 and 𝑚𝑝𝑡𝑠 if 

its 𝜀-neighborhood contains at least 𝑚𝑝𝑡𝑠 objects. An object is called a border object if it has 

fewer than 𝑚𝑝𝑡𝑠 but is within 𝜀 of a core object.  An object is considered noise if it is neither a 

core object nor a border point. As shown in Figure 14, point A is a core point since its 𝜀-

neighborhood contains 7 points, and given 𝑚𝑝𝑡𝑠 is 6. Point B is a border point since it is in the 𝜀-

neighborhood of A, but its 𝜀-neighborhood contains 3 points. Point C is an isolated point, which 

is a noise point. 

The cluster detection process of DBSCAN: 

1. For each point or object in the dataset, we identified its 𝜀-neighborhood and the core object. 

We initialized the clusters with the core object. 
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2. Starting from one initialized cluster or core object, we checked the objects in the 𝜀-

neighborhood and marked them as visited: 

o If the neighbour is a core object, we added the neighbour and its neighbour to the 

cluster. 

o If the neighbor is a border object, we add the neighbor to the cluster. 

3. Moving on to the next unvisited core object, we continued the process in step 2 until all core 

objects had been visited. The objects not added to any cluster were noise. 

 

 

Figure 14: Core Point, Border Point, and Noise of DBSCAN 

• Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) 

DBSCAN detects clusters using uniform density features based on the parameters 𝜀 and 𝑚𝑝𝑡𝑠. 

However, in the real world, the point distribution and clusters’ density may be heterogeneous, 

which can’t be well clustered by using uniform density features. Thus, HDBSCAN [54] was 

employed by extending the concept of core objects and reachability measures in DBSCAN to 

convert the space into a reachability graph, and utilizing a hierarchical structure to extract stable 

clusters. Campello et al. defined the following concepts, including core distance, mutual 

reachability distance, and mutual reachability graph [54]. The core distance of an object 𝑥𝑝  

(𝑑𝑐𝑜𝑟𝑒(𝑥𝑝)) with respect to 𝑚𝑝𝑡𝑠, is the distance from 𝑥𝑝 to its 𝑚𝑝𝑡𝑠-nearest neighbour. The 

mutual reachability distance between 𝑥𝑝 and 𝑥𝑞 is defined as 𝑑𝑚𝑟𝑒𝑎𝑐ℎ(𝑥𝑝, 𝑥𝑞) =

max {𝑑𝑐𝑜𝑟𝑒(𝑥𝑝), 𝑑𝑐𝑜𝑟𝑒(𝑥𝑞), 𝑑(𝑥𝑝, 𝑥𝑞)}. For example, given 𝑚𝑝𝑡𝑠 is 4, 𝑑𝑐𝑜𝑟𝑒(𝑥𝑝), 𝑑𝑐𝑜𝑟𝑒(𝑥𝑞), and 

𝑑(𝑥𝑝, 𝑥𝑞) are shown in Figure 15. By comparing the three distances, the mutual reachability 

distance between 𝑥𝑝 and 𝑥𝑞 is 𝑑𝑐𝑜𝑟𝑒(𝑥𝑞). The purpose of the mutual reachability distance is to 

discourage clustering of objects in sparse areas. Then, the mutual reachability graph 𝐺𝑚𝑝𝑡𝑠
 was 
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constructed where the objects of 𝑋 are vertices and the weight of each edge is the mutual 

reachability distance.  

 

Figure 15: Core Distance and Mutual Reachability Distance in HDBSCAN 

With the concepts mentioned above, the cluster detection process of HDBSCAN:  

1. We built a minimum spanning tree (MST) from 𝐺𝑚𝑝𝑡𝑠
, to identify a hierarchy of clusters by 

connecting points in a way that respects both distance and density. 

2. We identified the cluster hierarchy by removing edges from the MST in increasing order of 

mutual reachability distance. Cluster hierarchy at different distance levels was obtained. 

3. To get stable clusters, we used 𝑚𝑝𝑡𝑠 to filter out small clusters and retain only branches of the 

hierarchy that persist for a long time. This means that the cluster should exist over a wide range 

of density thresholds and contain a sufficient number of data points. To achieve the result, a 

cluster stability measure was calculated as in the equation (6), where 𝜆 =
1

mutual reachability distance
. 𝜆𝑑𝑒𝑎𝑡ℎ(𝑝) is the value of 𝜆 when point 𝑝 joined cluster 𝐶; 𝜆𝑏𝑖𝑟𝑡ℎ(𝑝) is 

the value of 𝜆 when point 𝑝 left cluster 𝐶. 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐶 = ∑(𝜆𝑑𝑒𝑎𝑡ℎ(𝑝) −

𝑝∈𝐶

𝜆𝑏𝑖𝑟𝑡ℎ(𝑝)) (6) 

The final clusters were selected by choosing clusters that maximize the total stability. 

5. We labeled the objects or points that did not belong to any cluster as noise. 
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4.3. Simulation Development 

4.3.1. Background Traffic Estimation 

To better simulate real-world microtransit scenarios, background traffic, including vehicles and 

pedestrians, is a necessary input to the simulation. In this project, we estimated the background 

traffic from the Wi-Fi detected travel flow in the city of Wilson by an augmentation approach. 

First, we calculated the average hourly OD flow for vehicles and pedestrians between AP 

locations on weekdays based on Wi-Fi-detected travel activity. Then, based on the sampling rate 

from the field tests in different location types, we calculated the adjusted OD flow and input it 

into the simulation as background traffic, as shown in the following equations. Equation (7) 

aggregates the OD flow from the origin 𝑖 to all destinations to get the total outflow of origin 𝑖. 

Then the OD ratio from the origin 𝑖 to destination 𝑗 was calculated as in the equation (8). By 

applying the sampling rate from field tests, the adjusted outflow at each origin is shown in the 

equation (9). Finally, the adjusted OD flow between 𝑖 and 𝑗 was obtained by multiplying the OD 

ratio (assuming unchanged from Wi-Fi-based travel data to overall travel data) and the adjusted 

outflow, as shown in the equation (10).  

𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑖 = ∑ 𝑂𝐷𝑖𝑗

𝑗

 (7) 

𝑟𝑎𝑡𝑖𝑜𝑖𝑗 =
𝑂𝐷𝑖𝑗

𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑖
 (8) 

𝑎𝑑𝑗𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑖
=

𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑖

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒
 (9) 

𝑎𝑑𝑗𝑂𝐷𝑖𝑗
=  𝑎𝑑𝑗𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑖

× 𝑟𝑎𝑡𝑖𝑜𝑖𝑗 (10) 

 

Access points (APs) are not distributed evenly in Wilson. Areas around government buildings 

have more APs, which may have better Wi-Fi signal coverage and quality to be detected by more 

clients. Different types of locations have different sampling rates. According to the field test, the 

sampling rate for locations around government buildings is 0.62; for locations around service 

buildings such as the library, the sampling rate is 0.55; and for other locations, the sampling rate 

is 0.59. Figure 16 shows the average adjusted OD flow results at 10 am for driving (a) and 

walking trips (b) on weekdays, with 19,721 driving trips and 15,573 walking trips. 
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(a) (b) 

Figure 16: Adjusted OD Flow at 10 AM for (a) Driving and (b) Walking  

4.3.2. Simulation Platform Construction 

The study developed a microscopic simulation platform that coordinates the road network, 

passengers, and service vehicles to evaluate the performance of microtransit services and 

potential improvement solutions. The simulation platform was built on an open-source 

microscopic traffic simulation software package - SUMO (Simulation of Urban Mobility)[55]. 

By applying the built-in Traffic Control Interface (TraCI) with a Python script, the behavior of 

vehicles and passengers in the simulation was set and monitored. Thus, different types of 

microtransit operation strategies were tested and evaluated in a simulation environment. As 

shown in Figure 17, the simulation platform needs three components as input: 1) road network, 

2) simulation settings, and 3) passenger and vehicle routing plan. The road network of the study 

area was obtained from OpenStreetMap and automatically converted into a simulation road 

network using SUMO tools. Simulation settings, such as the color, size, and type of the vehicle, 

were configured using a separate XML (eXtensible Markup Language) file. The passenger and 

vehicle routing plan was generated using the developed Matching and Routing Module (MRM), 

which took travel activity data as input. This data included microtransit requests with details such 

as origin, destination, ride start time, and service vehicles. The output of the simulation platform 

is evaluation measurements in terms of traffic efficiency and service performance. Traffic 

efficiency encompasses the total vehicle travel time and travel distance, while service 

performance includes passenger travel time, travel distance, and waiting time. 

The working flow of the simulation platform is shown in Figure 18. First, the service vehicle 

location, as well as the simulation settings, were initialized in the simulation network. After the 

simulation started, ride requests and available service vehicles were scanned at 5-minute 

intervals. It assumes that the vehicles continue to serve passengers whenever they’re available. 

The scanned ride requests and available service vehicles were input into the MRM module to 

generate routing plans for passengers and vehicles using various strategies, ranging from simple 

(e.g., first-request-first-serve) to complex (e.g., vehicle routing optimization), which will be 
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explained in detail in the following paragraph. The routing plans were input into SUMO with a 

configured road network, and the output evaluation measurement was performed after the 

requests were served. The process was repeated at regular intervals (i.e., every 5 minutes) until 

all requests were served. 

 

Figure 17: Component of the Microscopic Simulation Platform 

 

Figure 18: Working Flow of the Microscopic Simulation Platform 

The purpose of MRM is to generate routing plans for passengers and vehicles in simulation, 

given a list of requests and the availability of service vehicles. As shown in Figure 19, the MRM 

contains four parts, including 1) pickup and drop-off (PUDO) location assignment, 2) passenger-

vehicle matching, 3) vehicle routing, and 4) passenger routing. Each part coordinates with 

different logic or algorithms for testing. Assuming that there is a list of requests [𝑟1, 𝑟2, 𝑟3, 𝑟4] 

waiting for service, and a list of vehicles available [𝑣1, 𝑣2, 𝑣3]. The passenger will first walk to a 

designated pick-up location. After arriving at the drop-off location, the passenger walks to the 

final destination. The setting of PUDO locations is within walking distance of both origins and 

destinations, reducing service vehicle detours [35]. The first step of MRM is assigning PUDO 

locations. Suppose that each origin or destination has three potential pick-up and drop-off 

locations. Each request can be denoted as 𝑟𝑖 = ([𝑜𝑖1, 𝑜𝑖2, 𝑜𝑖3], [𝑑𝑖1, 𝑑𝑖2, 𝑑𝑖3]), where 𝑜 stands for 

pick-up locations, 𝑑 stand for drop-off location, and 𝑟𝑖 is the 𝑖𝑡ℎ request. A straightforward 

assignment logic is to pick locations on major or main roads that are nearest to the origins or 

destinations as potential PUDO locations. The second step is to match requests with the service 

vehicle. One simple method is to match requests to the closest vehicle. After matching, the third 

step is to identify appropriate PUDO locations and visiting sequences for each vehicle to serve 
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assigned requests efficiently. Different vehicle routing algorithms can be applied, such as the 

deterministic optimization method for exact optimal solutions or the heuristic methods for near-

optimal solutions. Note that the previous second and current third steps can also be combined 

into a single optimization problem to solve. After identifying the PUDO locations for each 

request in the third step, the fourth step is to set the path for each passenger to walk from the 

origin to the pickup location and then to the destination from the drop-off location. One simple 

method is to use the shortest path algorithm. We generated the routing plan for passengers and 

vehicles in four steps.  

Note that it is flexible to skip the first and fourth steps if alternative pick-up and drop-off 

locations are not preferred. Though the approaches in the MRM are relatively simple, due to their 

flexibility, they can be extended to adopt more sophisticated methods in the future.   

 

Figure 19: Matching and Routing Module 
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5. Experiments and Results 

5.1. Wilson Wi-Fi Processing and Field Test Results 

This section presents the Wi-Fi processing results and field test results in the city of Wilson, 

including sampling rate tests and trajectory tracking tests. 

5.1.1. Wilson Wi-Fi Processing Results 

Wi-Fi log data from 02/14/2024 to 02/27/2024, covered 292 APs and 21,877 clients. Among the 

detected clients, 46.52% had only stationary sessions or an average daily connection time greater 

than 16 hours. These data points were excluded. 18.62% of the clients had no stationary sessions, 

which may be due to clients passing by the Wi-Fi-covered area. Among the regular clients with 

both stationary and transitional sessions, 5.2% appear at least two days each week, with an 

average daily stationary duration of between 4 and 10 hours. These clients may be employees, 

and the remaining clients are considered residents, visitors, or non-employees. Visitors (28.81%) 

are clients who are detected less than twice a week or have an average daily stationary duration 

of less than 4 hours. Residents (0.84%) are clients detected more than twice a week and have an 

average daily stationary duration of more than 10 hours. Figure 20 shows the composition of the 

detected clients in the city of Wilson.  

From the clients, excluding stationary devices and random connections, the OD flow for both 

driving and walking modes between locations was obtained as in Figure 21 for a typical 

weekday. The size of the red dot indicates the number of trips related to the location, and the 

width of the blue links illustrates the number of trips between the locations. It can be observed 

that the travel flow radiates from the city center to suburban areas. Strong connections can 

be observed around the city center, where numerous government buildings, including City Hall 

and the Police Department, are situated. The strongest connections are observed between the 

parking lot and the City Hall. Additionally, places located outside the city center, such as the bus 

garage and the medical center, have high travel volumes. 

 

Figure 20: Detected Clients in the City of Wilson 
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Figure 21: OD Travel Flow between AP Locations 

Besides the OD flow, the detailed travel routes and related travel modes were obtained using 

navigation APIs (Google Directions API). Figure 22 illustrates the driving routes and walking 

routes on a typical weekday in the city of Wilson. In total, 2,786 driving routes and 1,400 

walking routes were detected. Driving routes were mainly located around the city center and 

peripheral highways, while walking routes were more concentrated in the city center, as 

expected.  

  
(a) (b) 

Figure 22: Travel Route on a Typical Weekday for (a) Driving and (b) Walking Mode 
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5.1.2. Wilson Field Test Results 

• Sampling Rate Test 

The manually collected people count, and Wi-Fi-detected inflow and outflow people count, as 

well as the sampling rate, are shown in Table 4. It shows that the highest detection sampling rates 

exist at Wilson Utilities Center (WUC), WUC in session 1, which can detect around 80% of the 

ground truth. The sampling rates vary across different periods, dropping to around 60% in 

Session 3. Additionally, Wi-Fi may overestimate the number of people, as seen in session 2 at the 

Gig East Exchange office (GEEO). This might be because people wandering around GEEO on 

the roadside but not entering the building are counted twice. In the morning period (session 4), 

there is no overestimation, and the sampling rates range from 0.75 to 0.67. The Wilson Public 

Library (WPL) consistently has the lowest Wi-Fi detection sampling rate, at around 55% of the 

ground truth. Wilson's overall sampling rate (the total flow recorded of Wi-Fi divided by the 

total flow calculated manually) of all locations was 0.74. It is comparable to most literature.  

Table 4. Sampling Rate Test Results 

Sessions Time Period Location 

Inflow- 

Wi-Fi  

Outflow- 

Wi-Fi  

Inflow- 

Manual  

Outflow- 

Manual  SR1 SR2 

1 13:00-17:00  WUC 70 79 89 101 0.79 0.78 

2 14:00-17:00  GEEO 70 74 40 47 1.75 1.57 

3 9:00-16:30  WUC 90 89 161 146 0.56 0.61 

4 9:00-12:00 GEEO 41 37 55 55 0.75 0.67 

5 14:00-16:30  WPL 51 54 94 97 0.54 0.56 

 

• Trajectory Tracking Test 

Driving Mode 

The driving test results are shown in Table 5, including Wi-Fi connection and disconnection 

times, as well as the actual arrival and departure times for each location. The stop times 

(durations) of Wi-Fi and actual cases are calculated by the difference between Wi-Fi connection 

and disconnection time and the actual arrival and departure time, respectively. Since the actual 

stay durations in the test are short, the estimated visiting time detected by Wi-Fi is the average of 

the connection time and disconnection time. The actual visiting time, on the other hand, is the 

average of the actual arrival and departure times. The average difference between the estimated 

and actual visiting time is 1.2 min for all locations. With the estimated visiting time, the 

estimated travel time between the locations can be calculated and compared with the actual travel 

time. The Mean Absolute Percentage Error (MAPE) is 20%. The MAPE between Wi-Fi detected 

stop time (duration) and actual stop time (duration) is 13.4%. It shows that the Wi-Fi-detected 

stop time at some locations is very close to the actual stop time. However, Wi-Fi detected a much 

longer stop time at locations such as the Bus Garage and the Museum of African American 

History. 
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Table 5. Results of Driving Trajectory Test 

Locations 

Wi-Fi Log Data Ground Truth Data 

Connect  Disconnect  
Stop Time 

(min) 
Arrival  Departure  

Stop Time 

(min) 
 

City Hall  5:06:21 PM  5:07:17 PM 0.93 5:06 PM 5:07 PM 1  

Greater Wilson 

Rotary Park 
 5:13:29 PM  5:15:27 PM 1.97 5:15 PM 5:17 PM 2  

Wilson Times   5:23:29 PM  5:25:01 PM 1.53 5:23 PM 5:24 PM 1  

 Residential Area  5:31:16 PM  5:32:53 PM 1.61 5:30 PM 5:32 PM 2  

Bus Garage  5:43:18 PM  5:49:53 PM 6.58 5:43 PM 5:47 PM 4  

Wilson 

Community 

College 

 5:49:51 PM  5:53:26 PM 3.6 5:49 PM 5:52 PM 3  

Museum of 

African American 

History 

 5:55:31 PM  6:01:25 PM 6.25 5:55 PM 5:56 PM 1  

City Hall 6:01:26 PM  6:11:12 PM 9.77 6:01 PM 6:11 PM 10  

Walking Mode 

The walking test results are shown in Table 6. It can be observed that the average difference 

between the estimated and actual visiting time is 1.06 min. However, the MAPE between the Wi-

Fi-detected and actual stop times is around 132%, which is significantly greater than the driving 

mode (although the walking mode's absolute time difference is only 1.06 minutes). One possible 

reason is that in the downtown area where APs were densely located, the interference between 

those APs and auto-connect features (e.g., blurring the disconnection time) may worsen the Wi-

Fi detection accuracy. In addition, the MAPE of estimated and actual travel time between the 

locations is 16.7%. 

Table 6. Results of the Walking Trajectory Test 

Locations  

Wi-Fi Log Data Ground Truth Data 

Connect Disconnect 
Stop Time 

(min) 
Arrival  Departure  

Stop Time 

(min) 
 

Wilson 

Utility Center 
 12:51:32 PM  12:53:47 PM 2.25 12:52 PM 12:53 PM 1  

City Hall  1:01:44 PM  1:04:40 PM 2.93 1:01 PM 1:02 PM 1  

Cultural 

Center 
 1:06:50 PM  1:10:02 PM 3.2 1:06 PM 1:08 PM 2  

Wilson 

County 

Courthouse 

 1:11:09 PM  1:18:19 PM 7.16 1:11 PM 1:13 PM 2  

Wilson 

County Board 

Election 

 1:19:04 PM 1:21:38 PM 2.57 1:19 PM 1:21 PM 2  

Wilson Times   1:28:22 PM 1:30:38 PM 2.26 1:29 PM 1:30 PM 1  

Microtransit Mode 
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Table 7 shows the results of the microtransit mode tests. Unlike the driving mode test, where the 

tester was instructed to remain at the test location only briefly after establishing a Wi-Fi 

connection, the microtransit mode test required the tester to wait at the location for the service 

vehicle to arrive, which typically took over 10 minutes. Thus, instead of checking the difference 

between Wi-Fi detected visiting time and actual visiting time, the difference between the 

detected and actual arrival and departure times was checked for the microtransit mode test. The 

average difference between the Wi-Fi detected arrival and departure times and the actual arrival 

and departure times is approximately 42 seconds. The MAPE of the detected and actual travel 

time between locations is 13.4%, and the MAPE for stop time is 5.9%.  

The test results are summarized in Table 8, showing the average time difference between the 

actual and detected visiting time for driving and walking mode tests, and the arrival/leaving time 

for the microtransit mode test. The MAPEs for actual and detected travel time and stop time for 

the three tests are also shown in Table 8, indicating that the microtransit mode test yields the best 

results. The reason might be that for the microtransit mode, the volunteer needed to wait at the 

location for the service vehicle to come, giving the smartphone enough time to establish a stable 

connection with APs. 

Table 7. Results of the Microtransit Trajectory Test 

Locations 

Wi-Fi Log Data Ground Truth Data 

Connect Disconnect  
Stop Time 

(min) 
Arrival  Departure  

Stop Time 

(min) 
 

Wilson Utility 

Center 
2:31:49 PM  2:46:00 PM 14.18 2:32 PM 2:46 PM 14  

Greater 

Wilson 

Rotary Park  

 2:53:11 PM  3:09:59 PM 16.8 2:53 PM 3:12 PM 19  

Wilson 

Community 

College 

 3:19:41 PM  3:29:32 PM 9.85 3:20 PM 3:30 PM 10  

Residential 

Area 
 3:36:14 PM  3:59:06 PM 22.87 3:38 PM 3:59 PM 21  

 

Table 8: Summary of the Trajectory Tests 

 Tests 
Difference in 

Visiting/Arrival/Leaving Time 

MAPE for Travel 

Time 

MAPE for Stop 

Time 

Driving Mode Test 1.2 min 20% 13.40% 

Walking Mode Test 1.06 min 17% 132% 

Microtransit Mode Test 0.7 min 13.40% 5.90% 
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5.2. Wi-Fi and Microtransit Human Travel Patterns Spatial-Temporal Analysis 

This section analyzes the travel pattern from Wi-Fi log data and microtransit data spatially and 

temporally. 

5.2.1. Wi-Fi Detected Travel Pattern 

Based on the Wi-Fi connection behavior presented in Section 5.1.1, the detected clients can be 

classified into three categories: pass-by clients, employees, and non-employees, which include 

residents and visitors. Error! Reference source not found. Figure 23 shows the hourly clients 

detected on weekdays and weekends for the three types of clients. It can be observed that for 

pass-by clients, the hourly count exhibits more variation and does not have obvious peak hours. 

For employees, there is an obvious morning peak hour at around 7 am, and the count drops 

quickly after 5 pm. For non-employees, a morning peak is observed around 8 am, and an 

afternoon peak occurs around 3 pm. 

 
(a) 

 
(b) 
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(c) 

Figure 23: Hourly Number of Clients Detected on Weekdays and Weekends for (a) Pass-By 

Clients, (b) Employees, and (c) Non-Employees 

Spatially, Figure 24 illustrates the average daily client count detected on weekdays and 

weekends. Generally, there are more clients detected on weekdays than on weekends. The 

highest number of clients is detected in the city center. The busiest location on both weekdays 

and weekends is Wilson City Hall, where 8,260 clients are detected on weekdays and 3,370 

clients are detected on weekends. The second busiest location, on both weekends and weekdays, 

is the Wilson Community Health Center. A church located near the city center is identified as 

the third busiest location on weekends, with 1,101 clients recorded. 

 
(a) 



34 

 

 
(b) 

Figure 24: Average Daily Client Count Detected on (a) Weekdays and (b) Weekends 

5.2.2. Microtransit Travel Pattern 

• Basic summary 

Wilson’s microtransit data provides information from the following perspectives: demand and 

supply, service performance, trip-related information, transportation equity, and emerging 

mobility, as shown in Table 9. The findings are listed below: 

o 42.5% more ride requests were observed on weekdays than on weekends. 

o Both the cancellation rate and completion rate are higher on weekdays than on 

weekends. 

o Actual waiting time is higher on weekdays and also higher than the estimated waiting 

time given by the Via App. 

o The rider tends to cancel the request if the estimated waiting time is around 30 

minutes on weekdays or 20 minutes on Saturdays. 

o Before confirming cancellation, riders usually have already waited for around 18 

minutes on weekdays or 12 minutes on Saturdays. 

o The ride-sharing rate is higher on weekdays, and there are more requests on 

weekdays.  

Table 9: Basic Statistic Analysis for Microtransit Data 

Category Attributes Weekdays Saturdays 

Demand and Supply Average number of requests per day 938 659 
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Number of vehicles in operation per day 17 17 

Cancellation rate 7.00% 5.50% 

Completion rate 71.30% 69.90% 

Service Performance 

Estimated waiting time 22.2 min 15.5 min 

Actual waiting time  25.1 min 17.4min 

Average estimated waiting time for 

cancelled requests 
29.4min 21.7min 

 Average actual waiting time for cancelled 

requests 
17.9min 12.0 min 

Drop-off delay 5.9min 3.7min 

Trip Information 

Pick up walking distance 87.4 meters 86.2 meters 

Prop off walking distance  89.2 meters 88.3 meters 

Ride distance 3.6 mile 3.2 mile 

Ride duration 10.8 min 9.3 min 

Transportation Equity Wheelchairs pct 5.80% 5.90% 

Emerging Mobility Ride-sharing rate 55.80% 37.80% 

 

• Temporal pattern  

From the microtransit data, the average hourly number of requests can be obtained for 

weekdays and Saturdays, as shown in Figure 25Error! Reference source not found.. Note that 

microtransit doesn’t operate on Sundays. It shows that demand is high during morning peak 

hours, from 8:00 am to 10:00 am on weekdays, and peaks around 3:00 pm, marking the 

afternoon peak hour. On Saturdays, the demand peaks at 9 am and 2 pm. The demand in the 

afternoon is higher than the demand in the morning. Additionally, the blue bars in the diagram 

indicate that more requests are cancelled as demand increases. 

 
(a) 
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(b) 

Figure 25: Average Hourly Request Number on (a) Weekdays and (b) Weekends 

• Spatial pattern 

By applying the HDBSCAN clustering method on the origin and destination (OD) of 

microtransit trips, the hotspots can be obtained as convex polygons, shown in Figure 26. Several 

hotspots are observed around commercial areas, recreational fields, public institutions, and 

residential areas close to the city center.  

Additionally, the spatial correlation between hotspots and the poverty ratio is analyzed. The 

green color showing the poverty ratio in each census block group is calculated by the equation 

(11). 𝐼𝑃𝑅 represents the income-to-poverty ratio, which can be obtained from the American 

Community Survey (ACS) [44]. The poverty ratio range is from 0 to 1, where a value closer to 1 

indicates a higher proportion of people with incomes below the poverty threshold. Figure 26 

shows that residential areas with a high poverty ratio are a hotspot for the microtransit service. 

Additionally, trips from such residential areas are primarily connected to the downtown and 

commercial areas. 

𝑝𝑜𝑣𝑒𝑟𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝐼𝑃𝑅 < 1

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

(11) 
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Figure 26: Microtransit Hotspots, Hotspot Related Travel Flow and Poverty Ratio 

5.3. Travel Pattern Comparison and Potential Transit Enhancement Solutions 

This section compares the hotspots from Wi-Fi detected travel activity and microtransit trips. The 

potential microtransit riders who use the Wi-Fi service are identified and analyzed to determine 

potential solutions for transit enhancements. 

Hotspots of origins and destinations (ODs) from both datasets were identified using various 

density-based clustering methods that utilized different features of Wi-Fi-based travel activity 

and microtransit trips. As shown in Table 10, DBSCAN was applied to Wi-Fi data, and 

HDBSCAN was applied to microtransit data. This is because APs in Wi-Fi detection as origins or 

destinations have a fixed signal range, which fits the fixed parameter 𝜀 requirement in DBSCAN. 

On the other hand, microtransit ODs may have various densities in different areas in Wilson, 

which requires a hierarchical structure in HDBSCAN to capture the variations. With the 

parameters in Table 10, the OD hotspots from Wi-Fi and microtransit datasets can be detected. 

Table 10: Cluster Parameters and Result Number of Clusters 

 
Wi-Fi Origin Wi-Fi Destination Ride Origin Ride Destination 

Clustering method DBSCAN HDBSCAN 

MinPts 18 19 13 13 
𝜀 300 meters None 

n_clusters 17 16 18 17 
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Figure 27 shows the common and unique OD hotspots from Wi-Fi and microtransit on typical 

weekdays. Figure 27 (a) and (b) shows that the major common OD hotspots (represented by Wi-

Fi AP clusters) are the city center and surrounding residential areas, as well as the Wilson 

Community College and Wilson Medical Center. Figure 27 (c) and (d) shows the OD hotspots 

that are unique for the microtransit service (red) and Wi-Fi (green). It can be observed that 

unique OD hotspots for the microtransit service are located around residential areas and 

commercial areas, such as grocery stores, shopping centers, and restaurants. The unique OD 

hotspots for Wi-Fi service are located around parks and some government buildings, such as the 

Wilson operation center. The origin and destination hotspots don’t have a significant difference.  

 
 

(a) (b) 

  
(c) (d) 

Figure 27: Comparison of Wi-Fi and Microtransit Hotspots: (a) Common Origin Hotspot 

on Weekdays; (b) Common Destination Hotspot on Weekdays; (c) Unique Origin Hotspot on 

Weekdays; (d) Unique Destination Hotspot on Weekdays 

Aside from the common and unique hotspots for Wi-Fi and microtransit services, potential 

microtransit trips that utilize Wi-Fi services were also examined. Figure 28(a) shows the 

matched trips, which are the microtransit trips also detected by Wi-Fi. The matched trip is 

identified if it satisfies two conditions: 1) The microtransit trip starts and ends within the Wi-Fi 
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covered area, assuming that the AP signal range is 300 meters; 2) The time difference between 

the start time of the microtransit trip and Wi-Fi detected trip should be within 30 minutes, as well 

as the end time.  32 trips are matched out of the 5056 microtransit trips from February 15, 2024, 

to February 6, 2024, which represents 0.63%. Figure 28(b) illustrates the microtransit trips 

originating within and outside the Wi-Fi service area, assuming an AP signal range of 300 

meters. The red dots represent the origins within the Wi-Fi service area, while the dark blue dots 

denote the origins outside the Wi-Fi service area. 2,060 microtransit trips start within the Wi-Fi 

service area, meaning that 40.7% of the users have the potential to use the public Wi-Fi service 

to place the ride requests. The significant difference between the existing matched trips (0.63%) 

and the potential Wi-Fi serviced trips (40.7%) suggests a substantial opportunity for shifting 

microtransit users to utilize free Wi-Fi service rather than their phone data plan, which could 

have a socioeconomic impact.  

  

(a) (b) 

Figure 28: Potential Microtransit Trips Using Wi-Fi service: (a) Matched Trips; (b) Microtransit 

Trips with Origins with and without Potential Wi-Fi Service 

5.4. Simulation Analysis and Results 

This section presents the testing results of the proposed simulation platform, which aims to 

reproduce real-world scenarios and evaluate different vehicle operation logics. 

5.4.1. Real-world Scenario Reproduction 

Real-world scenarios are recreated in the simulation by utilizing actual microtransit data, 

including origin, destination, and request time (O-D-T), as well as the walking distance 

associated with each request. Figure 29 illustrates a simulation with a road network, background 

traffic, service vehicles, and passengers. Wilson’s road network was obtained from 

OpenStreetMap. The background vehicle and pedestrians in yellow were generated according to 

the Wi-Fi detected OD flow in driving and walking modes. Passengers in blue and service 

vehicles in red, along with their locations and routes, were generated from the microtransit data.  
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Figure 30 shows an example of the passengers' pickup and drop-off sequence of a service 

vehicle. The step is the timestamp in the simulation, starting from 0, and was converted from the 

actual request time in the Time column. The edge represents the origin or destination road link in 

the simulation network for each passenger, which was converted from the actual origin and 

destination coordinates. Routes between the origin and destination edges in the network can be 

generated by the shortest path algorithms. To mimic the walking behavior of passengers, pickup 

and drop-off locations were selected as the one-step downstream or upstream edges of the real 

origin or destination edges along the shortest path according to real walking distance, as shown 

in Figure 31. Other settings of the simulation are described below: 

1. Passengers appear at their original edges when making the service requests. 

2. Passengers walk to the pickup edges and wait for the vehicle. 

3. Vehicles stop at the pickup edges for a fixed time interval (90 seconds after calibration) to 

pick up the passengers. 

4. After delivery, vehicles wait at the drop-off locations and stop until receiving the subsequent 

request. 

 

Figure 29: Road Network, Background Traffic (yellow dots - people, yellow vehicles - cars), 

Service Vehicle (red vehicles), and Passengers (blue dots) 

 

Figure 30: Service Vehicle PUDO Information from Microtransit Data 
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Figure 31: Selection of PUDO Locations 

Using those settings, a simulation scenario was constructed according to the microtransit data 

from 9:00 a.m. to 10:00 a.m. on January 2, 2024, which included 15 service vehicles and 62 

requests. Table 11 shows the comparison of results between the simulation scenario and the 

ground truth (learned from the data) in terms of passenger waiting time, ride time, ride distance, 

pickup time, and drop-off time. Though the mean absolute percentage error (MAPE) for 

passenger waiting time and ride time is 15.6% and 20.7% respectively, which is calculated by 

comparing the simulated waiting time and ride time of each request with the corresponding real-

world waiting time and ride time. The mean error is around 0.16 minutes, which is relatively low. 

The MAPE of ride distance is 25.7%, which may be improved by a more advanced vehicle 

routing method and a more up-to-date road network. The error between the simulated and real-

world pick-up and drop-off times is small, within 10 seconds. Generally, the simulation can 

efficiently and accurately capture a real-world scenario. 

Table 11: Accuracy of Simulation Scenario Compared with Ground Truth 

  

Passenger 

Waiting 

Time 

Ride Time Ride Distance 
Pick-up 

Time 

Drop-off 

Time 

Ground truth mean 13.3 min 9.32 min 3.33 mi - - 

Simulated mean 13.15 min 9.41 min 3.59 mi - - 

MAPE 15.60% 20.70% 25.70% - - 

Mean Error (ME) -0.16 min 0.16 min 0.25 miles -0.14min -0.03 min 

5.4.2. Testing and Evaluation of MRM Logics 

Given the 15 vehicles and 62 requests, two Matching and Routing Module (MRM) logics were 

evaluated. Note that the two logics serve as examples to validate the simulation platform's ability 

for testing and evaluation, rather than aiming to yield optimized results. Table 12 provides 

further details on the logic. Both logics assign four alternative pick-up and drop-off locations for 

each origin and destination, respectively, which are the four closest edges located near the origin 

or destination. The shortest path is used to generate the passenger walking routes from the origin 

to the pick-up location and from the drop-off location to the destination. In MRM logic 1, the 

passenger-vehicle matching and vehicle routing problems were combined and solved using 

mixed-integer linear programming (MILP) to minimize the total vehicle miles traveled (VMT). 

The MILP was constrained by vehicle capacity (set to 5, as it is the capacity of the microtransit 

minivan). Additionally, the service order is set to first pick up all matched requests before 
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dropping off the passengers (i.e., pick up all first and drop off all later), to simplify the 

optimization problem for testing purposes. The matching result and the order of service (both 

pickup and drop-off) are obtained by solving the MILP. MRM logic 2 matched the ride requests 

with the spatially closest service vehicle and used a heuristic method, considering vehicle 

capacity to generate a near-optimal vehicle routing solution. It may not provide the minimum 

total vehicle miles traveled, and there is no additional constraint for pick-up and drop-off orders.  

Table 12: Details of MRM Logics 

 MRM Logic1 MRM Logic 2 

PUDO Location 

Assignment 

4 nearest locations downstream of the origin; 4 nearest locations 

upstream of the destination 

Passenger-Vehicle 

Matching 
Optimization approaches: 

MILP to minimize total VMT; 

Constraints: Vehicle Capacity, 

Pick-up First 

Match requests with the closest 

vehicle 

Vehicle Routing 
Heuristic vehicle routing method 

considering vehicle capacity 

Passenger Routing Shortest paths 

 

Two MRM logics were then implemented, and the resulting simulation performance was 

evaluated, as shown in Table 13. It can be observed that Logic 1 performs better in terms of total 

VMT, as this is the objective of the optimization problem. Logic 2 yields better service 

performance, with shorter walking distances, riding distances, and riding times, as well as 

reduced passenger waiting times, since the vehicle can pick up and drop off passengers 

simultaneously to minimize waiting time.  

Table 13: Evaluation of MRM Logics 

 

Average 

Passenger 

Walking 

Distance 

Average 

Passenger 

Riding Distance 

Average 

Passenger 

Riding Time 

Average 

Passenger 

Waiting Time 

Total 

Vehicle 

Miles 

Traveled 

Logic1 671 meters 3.52 miles 5.5 mins 9.5 mins 121 miles 

Logic2 600 meters 3.22 miles 5 mins 7.2 mins 133 miles 

6. Conclusions and Future Work 

This project aims to identify potential system performance improvement solutions for 

microtransit services by analyzing comprehensive datasets, including Wi-Fi and microtransit 

data, in the city of Wilson, North Carolina. Wi-Fi log data was provided by the city of Wilson 

and processed to help understand the city-level human travel pattern. A Wi-Fi log data processing 

framework was proposed to obtain human travel activity, including trip origin, destination, travel 

routes, and travel modes, from Wi-Fi log data. The microtransit service was launched in Wilson 

in 2020 and is operated by the mobile application Via, which can record the details of requests 

and trip information. 
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After processing these datasets, a spatial-temporal analysis was applied to explore travel patterns 

derived from Wi-Fi log data and microtransit data. By comparing the travel patterns from these 

two datasets, particularly the origin and destination hotspots, potential service improvement 

solutions can be identified. To further evaluate the potential solutions, a microscopic microtransit 

simulation platform was developed, integrating background traffic, pedestrian behavior, and 

service vehicle operation. The key findings of the study are described below: 

• Wi-Fi log data processing and analysis 

1) A navigation API-based Wi-Fi log data processing framework was developed to generate 

human travel activity. 

2) From February 14, 2024, to February 27, 2024, a total of 21,877 unique clients were 

detected, with 46.52% of the clients identified as stationary devices or random connections. 

The remaining clients, including those involved in travel activities, can be classified into 

three categories: visitors, employees, and non-employees. As expected, the peak hours for 

employees are 7:00 a.m., and the peak hours for non-employees are 8:00 a.m. and 3:00 p.m. 

More travel flows are observed around the city center and between specific locations such as 

the bus garage and the medical center. 

3) A series of field tests was conducted in the city of Wilson to evaluate the accuracy of Wi-

Fi detection, including sampling rate tests and trajectory tracking tests. The tests indicated 

that the overall sampling rate in the study area is 75%. For the trajectory tracking tests, 

Wi-Fi can accurately detect the visited location sequence. For instance, the MAPE for 

detected travel time between visited locations is 20%, 16.7%, and 13.4% for driving, 

walking, and microtransit modes, respectively. 

• Microtransit travel pattern analysis 

1) The microtransit data indicates that the average passenger waiting time for a ride is 29.4 

minutes on weekdays and 21.7 minutes on weekends (i.e., Saturdays). 

2) The demand for the microtransit service is higher in the afternoon than in the morning and 

usually peaks at 3 pm. The origin and destination hotspots are generally around the city 

center, the commercial areas, some recreational fields, and residential areas with a relatively 

high poverty rate. 

• Potential improvement solution identification 

1) The common OD hotspot for Wi-Fi travel activity and microtransit trips is the city center 

and surrounding low-income residential areas, where they have sufficient APs and a quality 

Wi-Fi signal. The unique hotspots for microtransit trips are the commercial areas, and the 

unique hotspots for Wi-Fi trips are recreational parks and government buildings. 

2) Under current Wi-Fi AP settings, 40.7% of microtransit trips can potentially access Wi-Fi 

when a service request is placed. However, actual Wi-Fi and microtransit common trips are 
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few, accounting for only 0.63% of the total trips, indicating a vast potential for using public 

Wi-Fi to request microtransit services. 

3) Based on the comparison of Wi-Fi and microtransit travel patterns, the following 

recommendations can be made: 

o More Wi-Fi APs should be installed around the commercial area (grocery centers, 

shopping centers, and restaurants) to serve more users and travel activity. 

o A fixed-route bus line may be reinstated to connect low-income residential areas and 

commercial areas, serving the concentrated travel flow between them to improve the 

efficiency of the mobility system.  

 

• Network performance and benefit evaluation 

1) A microscopic simulation platform was built on SUMO, utilizing Wi-Fi-based human 

travel activities as background traffic. The simulation platform aims to replicate real-world 

scenarios, including pedestrian behavior and microtransit services, based on microtransit 

data. The mean error between the simulated and real passenger waiting times and ride times 

is -0.16 minutes and 0.16 minutes, respectively. 

2) An MRM module interface was developed for the simulation platform, which can integrate 

different passenger-vehicle matching, vehicle routing, PUDO location assignment, and 

passenger routing logic. Two MRM logics, an optimization method for minimizing total 

VMT and a heuristic method based on rider and vehicle distance, were tested. The 

performance can be evaluated in terms of traffic efficiency and service performance. Traffic 

efficiency encompasses both vehicle travel time and travel distance. Service performance 

includes passenger travel distance, travel time, and waiting time. 

Future work could include the further development of the microtransit simulation platform as a 

compatible tool for real-world applications, by integrating more road networks and MRM logics 

to test different types of scenarios, services, and mobility improvement solutions. Additionally, 

the proposed methods, including Wi-Fi log data processing, analysis, and comparison of Wi-Fi 

and microtransit travel patterns, as well as microtransit simulation methods, can be extended to 

other cities to provide meaningful improvements and evaluation results, thereby enhancing the 

efficiency of urban transportation systems.   

7. Implementation and Technology Transfer Plan 

The research products of the project include: 1) a public Wi-Fi log data processing and analysis 

approach to process raw Wi-Fi log data and model city-level human travel demand and mobility 

patterns; 2) analyzing on-demand microtransit trip data (i.e., OD pairs) and safety data in Wilson, 

and comparing Wi-Fi human travel demand, microtransit ride, and safety factors to identify 



45 

 

potential microtransit service improvements; 3) developing a microtransit simulation tool for 

evaluating microtransit service improvement solutions.  

NCDOT’s Integrated Mobility Division (IMD) and the city of Wilson, NC, will benefit from this 

research outcome. Other NCDOT units, such as the Transportation Planning Division and cities 

with public Wi-Fi service, like Holly Springs, will also benefit from this research for their 

existing or future microtransit deployments.  

The project explored public Wi-Fi log data to understand city-level travel demand for enhancing 

mobility services, such as microtransit in North Carolina cities. This is the first-of-this-kind 

analysis based on public Wi-Fi log data and microtransit operation data to identify microtransit 

service improvement opportunities in a real city - Wilson, NC. The approaches and analysis 

results serve as a potential and efficient solution and a benchmark for supporting the cities that 

provide public Wi-Fi service to improve existing microtransit or deploy new and advanced 

transit services through understanding the city-level travel demand and safety patterns. This 

project will greatly help the NCDOT Integrated Mobility Division (IMD)’s mission and city 

transit agencies with respect to the increase in operational efficiency, time savings, and safety, as 

well as the development and improvement of specifications or guidelines for microtransit and 

ultimately advanced transit services. Also, the proposed modeling and analysis framework 

creates considerable collaboration opportunities for NCDOT. On the other hand, the project 

required a variety of data.  Greenlight provided free public Wi-Fi service and Wi-Fi log data. 

Also, microtransit data was offered by the city of Wilson’s RIDE program. Other data, including 

road network, demographics, and population (from Census) can be obtained from NCDOT and 

the city of Wilson, or downloaded from the Internet, such as Open Street Map (OSM). Therefore, 

the cost of processing and management of data is minimal compared with the significant benefits 

of the project.  

This technical report can be used in a webinar to introduce the major outcomes and products of 

the project to train users who are interested in public Wi-Fi human mobility and microtransit 

services. The major findings of technology and knowledge have been presented in multiple 

professional conferences, such as the Transportation Research Board (TRB), ASCE ICTD, and 

NCSITE annual meetings. A journal paper, “A hierarchical Wi-Fi log data processing framework 

for human mobility analysis in multiple real-world communities,” has been published in Travel 

Behaviour and Society. Further research outcomes and findings from the project are planned for 

publication in journals and conference proceedings.   
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